
Let’s play a little guessing game

What’s this?

An old lady?

A shopping cart?

Pastas?

A supermarket?

An iOS developer at the end of the day?

It’s Functional Programming

Functional Programming divides
systems into 3 categories

Inert things Computations Actions

Functional Programming divides
systems into 3 categories

Inert things

Raw material that can do nothing by itself

A shopping cart Pastas

Computations

Always have the same result no matter how many times we do it

Computing the total price Adding an item to the cart

Actions

The outcome depends on when and how many times you do it

Paying the bill Finding a parking spot

Functional Programming

Inert things & computations

(Because they are safe to use, predictable and highly testable)

Functional Programming

Actions

(Because they are more unpredictable and we will have to manage them)

Inert things Computations Actions

Functional Programming divides
systems into 3 categories

State machines are closely related
to Functional Programming

Swift concurrency and state
machines

Thibault Wittemberg FrenchKit 2022

The path to modern and reliable features

States Transitions Outputs

State machines also divide
systems into 3 categories

States Transitions Outputs

Inert things Computations Actions

== =

States Finite set of mutually exclusive
values

FillingInTheCart

States

AtTheCheckout

Paying

GoingHomeHappy

GoingHomeSad

States Immutable data

Transitions
Pure functions* that drive the

passage from one state to
another

*Pure functions are side effect free. They cannot access a shared state

Transitions

FillingInTheCart

AtTheCheckout Paying

FillingInTheCartItemWasAdded

WalkingToTheCashier

GivingMyCreditCard

Pure functionsTransitions

Outputs Side effects that depend on
the current state and an event

Outputs

(UpdateStock)

(UpdateCustomerQueue)

(ExecuteTransaction)

ItemWasAdded

WalkingToTheCashier

GivingMyCreditCard

FillingInTheCart

FillingInTheCart

FillingInTheCart

AtTheCheckout

AtTheCheckout

Paying

Side EffectsOutputs

Applications are about state whether you want it or not, let’s make it EXPLICIT

Help increase the code coverage by leveraging pure functions

Unlock collaboration across teams around a diagram and eventually a DSL

Document our projects

Help in the paradigm V = f(S) of unidirectional data flow architectures

Why state machines and FP?

GoingHomeHappy

GoingHomeSad

ItemWasAdded

WalkingToTheCashier GivingMyCreditCardInitial

PaymentHasFailed

PaymentHasSucceeded

FillingInTheCart

(UpdateStock)

AtTheCheckout
(UpdateCustomerQueue)

Paying

(ExecuteTransaction)

The internal behaviour of our state
machine when paying

State Machine

AtTheCheckout

GivingMyCreditCard

State Machine

AtTheCheckout

CreditCardWasGiven (ExecuteTransaction)

State Machine

AtTheCheckout Paying

Transition

CreditCardWasGiven (ExecuteTransaction)

State Machine

AtTheCheckout Paying

Transition

Paying

?

State Machine

Paying

PaymentHasSucceeded

(ExecuteTransation)

State Machine

Paying

PaymentHasSucceeded

State Machine

Paying GoingHome
Happy

Transition

PaymentHasSucceeded

Paying GoingHome
Happy

Transition

State Machine

PaymentHasSucceeded GoingHomeHappy

We can see a state machine as a
stream of states

Events States

State Machine

Side effects feeding back events

Transitions cannot happen concurrently
to guarantee the determinism of the state

machine

Outputs on the other hand are
completely asynchronous

That being said, the state machine as a
whole cannot block its callers (could be a UI)

Leveraging Swift concurrency
(Won’t be a deep dive)

let state1 = await transitions(state0, event0)
let state2 = await transitions(state1, event1)

A transition might take time to execute (if heavy computations).

The caller thread is free to do something else in the meantime, the result is deferred to a point in future.

Cancellation is collaborative, if the root task is cancelled, so will be the transitions.

(We can use Task.isCancelled to break a for loop for instance)

Structured

Unstructured

let task = Task {
let event = await sideEffect()
stateMachine.send(event)

}

// task.cancel() -> if needed

The task execution is scheduled by the system (inherits parent Actor executor).

The collaborative cancellation doesn’t apply, we must handle it by ourselves.

Values over time

for await state in stateMachine {
// publish the state

}

A state machine is a sequence of states produced asynchronously.

We will leverage AsyncSequence to iterate over these states.

struct StateMachine: AsyncSequence {
func next() async -> State? {

// apply transition
// return the new state

}
}

Thibault Wittemberg FrenchKit 2022

Swift concurrency and state
machines
Hands on

The goal: to create a generic state machine
engine and use it to model the supermarket
use case in a SwiftUI application

Clone the repo

https://github.com/sideeffect-io/FrenchKit2022_HandsOn

There’s a README file at the root of the
project, just follow the instructions 😄

https://github.com/sideeffect-io/FrenchKit2022_HandsOn

Credits

Photo by Vlad Frolov on Unsplash

Photo by Patrick Tomasso on Unsplash

Photo by Alfred Kenneally on Unsplash

Photo by Studio Blackthorns on Unsplash

Photo by Evergreens and Dandelions on Unsplash

Photo by David Veksler on Unsplash

Photo by Radek Homola on Unsplash

Photo by Clay Banks on Unsplash

Photo by Egor Myznik on Unsplash

Photo by Sven Mieke on Unsplash

Grokking Simplicity by Eric Normand

Photo by Shashank Verma on Unsplash

Photo by Michael Fousert on Unsplash

https://unsplash.com/@v_cr2?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/shopping-cart-supermarket?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@impatrickt?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/pasta?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@alken?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/shopping-cart?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/es/@studioblackthorns?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/packaging?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@evergreensanddandelions?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/cash-register?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@davidveksler?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/shopping-cart?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@radekhomola?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/cash-register?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@claybanks?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/cash-register?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@vonshnauzer?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/parking?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@sxoxm?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/parking?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@heyshashank?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/parking-supermarket?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/@michaelfousert?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/photos/parking-lot?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

Twitter:

GitHub:

LinkedIn:

Mail:

@nakodark

https://github.com/sideeffect-io

https://github.com/twittemb

https://www.linkedin.com/in/twittemb/

thibault@sideeffect.io

Thibault Wittemberg
Freelance @SideEffect

https://github.com/sideeffect-io
https://github.com/twittemb
https://www.linkedin.com/in/twittemb/
mailto:thibault@sideeffect.io

