“
/////
//47//4,7///
G

THE FACTS

LET'S WEAVE YOUR APPLICATION: WHAT IS IT ABOUT ?

The Facts

LET'S WEAVE YOUR APPLICATION: WHAT IS IT ABOUT ?

THE DRAWBACKS

LET'S WEAVE YOUR APPLICATION: WHAT IS IT ABOUT ?

WHAT WOULD WE LIKE TO ACHIEVE ?

~ Doctor McCoy - Starlrek

"

LET'S WEAVE YOUR APPLICATION

STEP 1

REUSABLE

LET'S WEAVE YOUR APPLICATION: REUSABLE

Lightweight OS API
by Olivier Halligon

Instantiates VC
In a type safe way

Protocol Oriented Programming

| MovieDetailViewController.storyboard

A paraplegic marine dispatched to the moon Pandora on a
unique mission becomes torn between following his orders
and protecting the world he feels is his home.

Year: 2009 Director: J.Cameron

Budget: 237.000.0008 Writer: J.Cameron

Casting

@060 nH

SWorthington Z.Saldana S.Weaver Slang M.Rodriguez

Simulated Metrics
Size Inferred
Status Bar None
Top Bar Inferred

Bottom Bar Inferred

View Controller
Title
Is Initial View Controller

Layout @ Adjust Scroll View Insets
Hide Bottom Bar on Push
Resize View From NIB
Use Full Screen (Deprecated)
Extend Edges @ Under Top Bars
Under Bottom Bars
Under Opaque Bars

Transition Style Cover Vertical
Presentation = Full Screen
Defines Context
| Provides Context
Content Size | | Use Preferred Explicit Size

~ ~

Width Height

Key Commands

import Reusable

class MovieDetailViewController: UIViewController, StoryboardBased {

// One line - type safe - instantiation (no more identifier)

let viewController =

window.rootViewController

MovieDetailViewController.instantiate()
viewController

1 VC per Storyboard
Super easy to instantiate in code

LET'S WEAVE YOUR APPLICATION: REUSABLE

@® Promote the cutting of storyboards into atomic units

@® Reuse VCs within different navigation contexts

STEP 2

FLOW
COORDINATOR

LET'S WEAVE YOUR APPLICATION: FLOW COORDINATOR

Instantiates VCs
Great for separation of concerns

‘Great with Reusable API
*. Great for DI

Composition Pattern
Great for navigation

structtgnation

-

Acts like a black box

VCs are not aware of their navigation context

LET'S WEAVE YOUR APPLICATION: FLOW COORDINATOR

eeee0 Carrier &

Wish list

T S
i :

;
i

LET'S WEAVE YOUR APPLICATION: FLOW COORDINATOR

LET'S WEAVE YOUR APPLICATION: FLOW COORDINATOR

Step 1: Define what is a Coordinator

/// Describes the available presentation options
/17
/// - push: push the VC in a navigation stack
/// - popup: popup the VC from bottom to top
enum PresentationType {

case push

case popup

/// Describes what must respect a Coordinator
protocol Coordinator: class {

/// a coordinator is a composition pattern, it holds references on its children

var childCoordinators: [Coordinator] { get set } Composition pattern

/// a root ViewController will be presented by the Coordinator callee
var rootViewController: UIViewController { get }

/// coordinators stack management Root navigation VC

func push (childCoordinator: Coordinator)
Tunc pop ()

/// What should this Coordinator do when first created
func start ()

/// handles the presentation of a ViewController

/17

/// - Parameters:

/// - viewController: the ViewController to present
/// - presentationType: the presentation option

Tunc present (viewController: UIViewController, withPresentationType presentationType: PresentationType)

LET'S WEAVE YOUR APPLICATION: FLOW COORDINATOR

Step 2: Implement a default navigation stack management
and a VCs presentation function

extension Coordinator {
func push (childCoordinator: Coordinator) {
self.childCoordinators.append(childCoordinator)

} Coordinators stack

func pop () {
self.childCoordinators.removelast()

}

func present (viewController: UIViewController, withPresentationType presentationType: PresentationType) {
switch presentationType {
case .popup:
viewController.modalPresentationStyle = .overFullScreen
viewController.modalTransitionStyle = .coverVertical]
self.rootViewController.present(viewController, animated: truc) VCs Presentation
case .push:
self.rootViewController.show(viewController, sender: nil)

}

LET'S WEAVE YOUR APPLICATION: FLOW COORDINATOR

class MainCoordinator: Coordinator { Step 3: Implement real naVigation f|OW

/// here comes low level services for Dependency Injection
private let settingsService: SettingsService
private let moviesService: MoviesService

var childCoordinators: [Coordinator] = [Coordinator]()
var rootViewController: UIViewController = UINavigationController()

init(withSettingsService settingsService: SettingsService, withMoviesService moviesService: MoviesService) {
self.settingsService = settingsService
self.moviesService = moviesService

}

func start () {
if lself.settingsService.settingsAreValid.value {
selt.showSettings(withPresentationType: .push)

} else { Start the navigation: what do | display first ?

self.showDashboard()

}

}

func (showSettings (withPresentationType presentationType: PresentationType)){ Reusable With DI
let settingsViewController = SettingsViewController.instantiate(withSettingsService: self.settingsService)
selt.present(viewController: settingsViewController, withPresentationType: presentationType)

}

func(éhowDashboard (}){
let tabBarController = UlTabBarController()

// create child coordinators in order to attach them to the tabBarController

let wishlistCoordinator = WishlistCoordinator(withSettingsService: =c¢lf.settingsService, withMoviesService: :=clf.moviesService)

let watchedCoordinator = WatchedCoordinator(withMoviesService: :=c!f.moviesService)
tabBarController.setViewControllers([wishlistCoordinator.rootViewController, watchedCoordinator.rootViewController], animated: false)

// start an stack the child coordinators
wishlistCoordinator.start()

LT IO A\ still Coordinator stack management here

selt.push(childCoordinator: wishlistCoordinator)
selt.push(childCoordinator: watchedCoordinator)

// show the tabBarController with ots two tabs
self.present(viewController: tabBarController, withPresentationType: .push)

LET'S WEAVE YOUR APPLICATION: FLOW COORDINATOR

class WishlistCoordinator: Coordinator { Step4: Define delegates to be able
to talk back with Coordinator

H
e \
protocol WishlistDelegate: class {
func settings ()

}

protocol MovieDelegate: clacs { A delegate per navigation possibility
func movieDetail (withMovieId id: Int) . - - .

} The appropriate granularity is hard to find

protocol CastDelegate: class {
func castDetail (withCastId id: Int)
}

\ S

extension WishlistCoordinator: WishlistDelegate {
func settings () {
let settingsViewController = SettingsViewController.instantiate(withSettingsService: self.settingsService)
self.present(viewController: settingsViewController, withPresentationType: .popup)

}

extension WishlistCoordinator: MovieDelegate {
func movieDetail (withMovield id: Int) {
let movieDetailViewController = MovieDetailViewController.instantiate(withMoviesService: sc!f.moviesService)
movieDetailViewController.delegate = self
movieDetailViewController.movield = id o
self.present(viewController: movieDetailViewController, withPresentationType: .push) D9|egat|0n pattern

}

extension WishlistCoordinator: CastDelegate {
func castDetail (withCastId id: Int) {
let castDetailViewController = CastDetailViewController.instantiate(withMoviesService: =clf.moviesService)
castDetailViewController.castlId = id
self.present(viewController: castDetailViewController, withPresentationType: .push)

LET'S WEAVE YOUR APPLICATION: FLOW COORDINATOR

Step 5: Talk back with my delegate
to tell him my new state

class MovielListViewController: UIViewController, StoryboardBased {

public weak var delegate: MovieDelegate!
public var movield: Int!

In a @IBAction
or a didSelectRowAt

self.delegate.movieDetail (withMovield: 2)

LET'S WEAVE YOUR APPLICATION: FLOW COORDINATOR

@® Ease the implementation of Dependency Injection
® Remove navigation code from VCs

@ Cut our application into logical units of navigation

STEP 3

REACTIVE
J PROGRAMMING

Adopted by many developers

Fits well with MVVM for instance, which | like

The Observer pattern done right

ReactiveX is a combination of the best ideas from
the Observer pattern, the Iterator pattern, and functional programming

Observable - - —_— =
V v V.V
debounce
Observer X é >
3. >
/" CREATE > COMBINE &, LISTEN
Easily create event streams or data Compose and transform streams with query-like Subscribe to any observable
streams. operators. stream to perform side effects.

LET'S WEAVE YOUR APPLICATION: REACTIVE PROGRAMMING

@® Promote Reactive Programming

LET'S WEAVE YOUR APPLICATION: ON THE ROAD TO THE WEAVING PATTERN

SOMETHING IS BEGINNING TO EMERGE !

LET'S WEAVE YOUR APPLICATION: ON THE ROAD TO THE WEAVING PATTERN

@® Describe the navigation in a more declarative way

Q FINAL STEP: WEAVY
THE WEAVING

PAITERN

LET'S WEAVE YOUR APPLICATION: WEAVY AND THE WEAVING PATTERN

Weaving from Wikipedia

LET'S WEAVE YOUR APPLICATION: WEAVY AND THE WEAVING PATTERN

Coordinator
(navigate)

Reusable
(Instantiate)

Reactive
(state changes)

MainFlow

SettingsVC
(pushed)

Settings

WishlistFlow

SettingsVC
(poped up)

MovieList

WatchedFlow

MovieDetalil

LET'S WEAVE YOUR APPLICATION: WEAVY AND THE WEAVING PATTERN

Not related to a
specific pattern
(MVVM, MVP. MVC)

Weavy OpenSource
framework (WIP)

®
S

Build on top of the 3 steps seen before
but without the boring and boilerplate code

LET'S WEAVE YOUR APPLICATION: WEAVY AND THE WEAVING PATTERN

“rum DemoWarp { Step 1: Declare navigation sections (WARPS)
et main and navigation states (WEFTS)

case wishlist
cacse watched

var warp: Warp {
switch self {
case .main:
return MainWarp(withWoolBag: MainWoolBag())
case .wishlist:
return WishlistWarp(withWoolBag: WishlistWoolBag())
case .watched:
return Watchedwarp(withWoolBag: WatchedWoolBag())
}

}

enum DemoWeft: weft {
case apiKey
case apiKeyIsComplete

case movielist
case moviePicked(withId: Int)
cacse castPicked(withId: Int)

case preferences

case login

case loginIsComplete
case settings

case settingslList

case settingsIsComplete

LET'S WEAVE YOUR APPLICATION: WEAVY AND THE WEAVING PATTERN

Step 2: Describe the Stitches (ViewControllers)
according to WARP and WEFT combination

class(ﬁishlistWarp{)Warp {

func knit(withweft weft: weft, usingWoolBag woolBag: WoolBag?) => Stitch {

guard let demoWeft = weft as? DemowWeft,
let wishlistWoolBag = woolBag =2:? WishlistWoolBag else { return Stitch.void }

switch demowWeft {

(?ase .movieList:)
let navigationViewController = UINavigationController()

SStit(:ll let viewController = WishlistViewController.instantiate()
navigationViewController.viewControllers = [viewController]

return Stitch(withPresentable: navigationViewController, withWeftable: viewController)

case .moviePicked(-t movield): Reusable Wlth DI

let viewController = MovieDetailViewController.instantiate(withMoviesService: wishlistWoolBag.moviesServices) |
return Stitch(withPresentationStyle: .show, withPresentable: viewController, withWeftable: viewController)

Stitch

case .castPicked(! =t castId):

let viewController = CastDetailViewController.instantiate(withMoviesService: wishlistWoolBag.moviesServices)
return Stitch(withPresentationStyle: .show, withPresentable: viewController, withWeftable: viewController)

Stitch

default:

return Stitch.void
}

LET'S WEAVE YOUR APPLICATION: WEAVY AND THE WEAVING PATTERN

Step 3: Navigation states are propagatedas
the user plays with the application

class WishlistViewController: UIViewController, StoryboardBased, Weftable {

in @IBAction or
didSelectRowAt

selt”.weftSubject.onNext (DemoWeft.moviePicked(withId: 3)) I

RxSwift

}

class MovieDetailViewController: UIViewController, StoryboardBased, Weftable {

self.weftSubject.onNext (DemoWeft.castPicked(withId: 2)) 'r_‘ @IBAction or
—_— didSelectRowAt
RxSwift

LET'S WEAVE YOUR APPLICATION: WEAVY AND THE WEAVING PATTERN

Step 4 : Bootstrap the Loom and let it weave
the first WARP

@UIApplicationMain
class AppDelegate: UIResponder, UIApplicationDelegate {

1ot disposeBag = DisposeBag()
var window: UIWindow?

var loom: Loom!

func application(application: UIApplication,
didFinishLaunchingWithOptions launchOptions: [UIApplicationLaunchOptionsKey: Any]?) => Bool {

guard let window = self.window else { return false }

loom = Loom(fromRootWindow: window)

The initial WARP

loom.weave(withStitch: Stitch(withPresentable: DemoWarp.main.warp,
withwWeftable: MainWeftable()))

return true

LET'S WEAVE YOUR APPLICATION: WEAVY AND THE WEAVING PATTERN

@® Describe the navigation in a more declarative way

LET'S WEAVE YOUR APPLICATION: WEAVY AND THE WEAVING PATTERN

